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Abstract

Type: Research paper

Purpose Detecting if two or multiple devices are moved together is
an interesting problem for different applications. However, these devices
may be aligned arbitrarily with regards to each other, and the three di-
mensions sampled by their respective local accelerometers can therefore
not be directly compared. The typical approach is to ignore all angular
components and only compare overall acceleration magnitudes — with
the obvious disadvantage of discarding potentially useful information.

Approach In this paper, we contribute a method to analytically deter-
mine relative spatial alignment of two devices based on their acceleration
time series. Our method uses quaternions to compute the optimal rotation
with regards to minimizing the mean squared error.

Practical implications After derotaion, the reference system of one
device can be (locally and independently) aligned with the other, and thus
that all three dimensions can consequently be compared for more accurate
classification.

∗This article is an extended version of a conference paper previously published in iiWAS
2014 (16th International Conference on Information Integration and Web-based Applications
& Services) by ACM Press.
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Findings Based on real-world experimental data from smart phones
and smart watches shaken together, we demonstrate the effectiveness of
our method with a magnitude squared coherence metric, for which we
show an improved EER of 0.16 (when using derotation) over an EER of
0.18 (when not using derotation).

Originality Without derotating time series, angular information can-
not be used for deciding if devices have been moved together. To the best
of our knowledge, this is the first analytic approach to find the optimal
derotation of the coordinate systems, given only the two 3D time acceler-
ation series of devices (supposedly) moved together. It can be used as the
basis for further research on improved classification towards acceleration-
based device pairing.

Keywords mobile devices, acceleration time series, quaternion derota-
tion, device authentication

1 Introduction

Common movement can be detected from sufficiently similar acceleration sen-
sor data and has interesting applications in mobile and ubiquitous computing.
This includes determining if devices are carried by the same user (Lester et al.,
2004) or transported on the same vehicle (Marin-Perianu et al., 2007) as well
as an interaction method for securely pairing handheld devices (Mayrhofer and
Gellersen, 2009; Bichler et al., 2007; Kirovski et al., 2007). However, such com-
mon movement is inherently three-dimensional. In the general case, the relative
alignment of two (or multiple) accelerometers embedded in different devices is
unknown: similar devices may be rotated arbitrarily with regards to each other
and different devices may embed their accelerometers with arbitrary orienta-
tions. Therefore, the three dimensions sampled independently will typically not
be aligned and are therefore not directly comparable.

A standard approach to deal with this issue is to discard all angular (i.e.
directional) information from the 3D vectors and only use their magnitude (i.e.
the length of each vector computed in an Euclidean space). This reduces three
dimensions to a single one that is invariant concerning orientation. Even when
two co-located accelerometers are oriented differently, they will experience sim-
ilar overall acceleration magnitudes. However, this simple approach discards
potentially valuable information that could be helpful in determining if acceler-
ations are sufficiently similar to each other or not (cf. Section 3).

In this article, we describe a method to explicitly determine the relative align-
ment of two mobile devices with regards to each other based on their recorded
acceleration time series. The underlying assumption is that both devices are
moved (relatively closely) together and therefore share sensor readings that
are only offset by 3D rotation but otherwise similar. Specifically, we assume
that both devices experienced similar translation and rotation with regards to
a common reference system. Our approach uses quaternions (Section 4) to
analytically compute optimal rotation between both device reference systems
(Section 5) and, based on real-world sensor data, works even in the presence of
small distances between the devices and typical sensor noise (Section 6).
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2 Related Work

Known applications of common movement presented in the context of mobile
and pervasive computing (e.g. (Lester et al., 2004; Marin-Perianu et al., 2007;
Mayrhofer and Gellersen, 2009; Bichler et al., 2007; Kirovski et al., 2007; Groza
and Mayrhofer, 2012)) have so far taken the simple approach and discarded
angular information. However, we suggest that all of these could benefit to var-
ious degrees from taking this information into account. Especially when used for
securing device communication (Mayrhofer and Gellersen, 2009; Bichler et al.,
2007; Groza and Mayrhofer, 2012) would this be valuable — any information
that is shared between the legitimate devices but not directly available to a
potential attacker increases the latter’s entropy of the resultant cryptographic
key and consequently improves the security level.

Kunze and Lukowicz (2008) have suggested position-invariant heuristics for
dealing with sensor displacement to improve movement recognition with a single
sensor (accelerometer and/or gyroscope). Our approach complements this work
when multiple sensors are in use, e.g. to detect if a mobile phone and a wrist
watch describe the same movement and are therefore on the same hand.

Quaternions have been used to minimize the root-mean-squared deviation
(RMSD) between solid bodies (Coutsias et al., 2004). We build upon this work
by translating it from body rotation to determining the relative alignment of
3D acceleration time series. Another related use of quaternions is representing
orientations in hand and head movement (Choe and Faraway, 2004).

3 Problem Overview

Determining if two (or multiple) devices are moved together based on their
respective local accelerations can be seen as a classification problem. When
they are moved together, sensor noise and systematic error will still lead to
(slightly) different sensor time series. When they are moved separately (but for
example with similar frequency and amplitude components), they might still
be “close” for some similarity measure (cf. (Mayrhofer and Gellersen, 2009) for
experimental “positive” and “negative” data). The systematic error is intrinsic:
even if the devices are held perfectly together and do not move with regards to
each other and the sensors are perfect and do not exhibit any sampling noise at
all, there will still be differences in acceleration time series whenever rotation
is part of the shared movement. This is because of different centers, i.e., the
physical placement of the respective accelerometers. Think of one accelerometer
on the outer curve and the other on the inner curve of a common rotation; they
move together without relative movement, but take different paths in 3D that
consequently lead to different local accelerations.

This issue is independent of the chosen similarity measure and also occurs
when only using the magnitude. In fact, discarding angular information makes
it even harder to determine that the devices were moved together because lo-
cally measured rotational components would in this case be similar, while the
magnitudes differ. Recently suggested heuristics explicitly discard accelerome-
ter time series in periods of large rotational movement (Kunze and Lukowicz,
2008). We expect classification accuracy to improve noticeably when comparing
three dimensions instead of one throughout various different use cases.
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Our approach to retain this 3D information is for devices to – locally and in-
dependently of each other – align the two coordinate systems for the subsequent
comparison. We analytically determine the “optimal” rotation between these
coordinate systems given only the two 3D time series (which are for example
exchanged securely using an interlock protocol and session keys as described
previously by Mayrhofer and Gellersen (2009)) and the assumption of shared
movement. In the scope of this paper, we define optimal to minimize the mean
squared error between all of the sample points. One method to analytically
determine the relative orientation is to use quaternions.

4 Quaternions and Rotations

Quaternions can be used to represent rotations in a three dimensional space.
Furthermore, they possess favorable properties like avoiding so-called “gimbal
locks” or enabling easy interpolation, something that other approaches like Euler
angles and matrix-based rotation do not exhibit. It is thus straight forward to
use quaternions to find the optimal rotation between two sets of vectors.

In the following, only the most important aspects of quaternions are pre-
sented, and we follow the notation of (Coutsias et al., 2004). More details
about quaternions can be found, e.g. in (Kuipers, 2002). A quaternion is a
tuple q = (q0,q), with q = (q1, q2, q3)′. Note that like in Matlab/Octave the
operator “ ′ ” denotes transposition, and all vectors without it are column vec-
tors. Quaternions are essentially a generalization of complex numbers, i.e. a
quaternion consists of a real part (q0) and three imaginary parts (q1, q2, q3). In
the area of three dimensional spaces, this imaginary part may take over the part
of a 3D-vector. Since quaternions form up an algebraic structure called division
ring, they allow the algebraic operations addition and multiplication, which for
a = (a0,a) and b = (b0,b) are defined as follows:

a+ b = (a0 + b0,a + b)

ab = (a0b0 − a · b, a0b + b0a + a× b). (1)

Here · and × denote the standard dot and cross products known from Euclidean
vector spaces. Interestingly, multiplication is associative, but not commutative,
i.e. in general ab 6= ba. The Matlab/Octave function shown in Listing 1 accepts
two quaternions p and q, both represented by 4D-vectors, and computes pq.

Listing 1: Computing pq for two quaternions p and q. Note that the operation
is not commutative.

function pq = qmul ( p , q )
a0 = p (1) ; a = p ( 2 : 4 ) ;
b0 = q (1) ; b = q ( 2 : 4 ) ;
acb = a0∗b + b0∗a + cross ( a , b ) ;
pq = [ a0∗b0−dot ( a , b ) ; a0∗b + b0∗a + cross ( a , b ) ] ;

end

Like for complex numbers, a quaternion q = (q0,q) does have a conjugate
quaternion qc which is defined by qc = (q0,−q). The conjugate now enables
the computation of the norm |q| of a quaternion, which is defined by |q|2 = qqc.
Note that quaternions u with length |u|2 = uuc = 1 are called unit quaternions.
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An important subclass of quaternions is given by pure quaternions q = (0,q),
which are defined to have a zero real part. For pure quaternions, the operations
(1) are simplified accordingly.

By using the rules of (1), quaternions now can be used for computing ro-
tations in a 3-dimensional Euclidean space. Each vector r = (r1, r2, r3)′ of the
space is represented by a pure quaternion r = (0, r). Rotations in the space
then can be characterized by a unit quaternion u by computing

r̂ = uruc. (2)

Note that r̂ = (0, r̂) is again a pure quaternion, whose vector part r̂ equals r
rotated by some angle φ and using the rotation axis u, i.e., the vector part of
u. The Matlab/Octave function shown in Listing 2 rotates a vector p = (0,p)
by the quaternion u.

Listing 2: Rotating vector p (p = (0,p)′) by a rotation represented by a unit
quaternion u. The result is again a pure quaternion holding the rotated vector
in its vector part.

function upuc = rotquat ( p , u )
uc = [ u (1 ) ; −u ( 2 : 4 ) ] ;
up = qmul (u , p) ;
upuc = qmul (up , uc ) ;

end

Given a desired rotation axis a = (a1, a2, a3)′ and a rotation angle φ, the
quaternion u representing this rotation is constructed by

u = (cos
φ

2
, sin

φ

2

a

|a|
). (3)

Thus, given this quaternion, using (2) rotates any desired vector r by angle
φ and axis a. The Matlab/Octave function shown in Listing 3 constructs a
rotation quaternion u from a rotation angle φ and a 3D-vector describing the
rotation axis.

Listing 3: Computing a rotation quaternion u.

function u = quat ( phi , a )
u = [ cos ( phi /2) ; sin ( phi /2) ∗normc ( [ a (1 ) ; a (2 ) ; a (3 ) ] ) ] ;

end

5 The Optimal Rotation

In linear algebra, rotations are represented by orthonormal square matrices U ,
rotating a vector x is then achieved by multiplying it from the right: x̂ = Ux.
Given two sets of vectors {xk} and {yk}, Coutsias et al. (2004) have shown how
to compute an optimal rotation U (through the use of quaternions) such that
the overall error

E :=
1

N

N∑
k=1

|Uxk − yk|2 (4)

is minimized. The respective Matlab/Octave function is shown in Listing 4.
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Centering both sets by computing the mean vectors x̄ and ȳ of each set, and
then subtracting x̄ from each vector of {xk} and ȳ from each vector of {yk}
will give lower errors but is not necessary for the method to work. Specifically
for acceleration time series, subtracting the mean (in practice a moving average
computed over sliding time windows) removes the static offset caused by gravity
and has previously also been found advantageous for comparing magnitudes by
Mayrhofer and Gellersen (2009). Like in (Coutsias et al., 2004) it is furthermore
assumed that X and Y are 3×N matrices, whose columns hold the vectors xk

and yk.

Listing 4: Computing the optimal rotation u given vectors xk and yk.

function [E,P] = residuum ( X, Y )
%co r r e l a t i o n matrix
R=X∗(Y’ ) ;
%matrix ho l d ing a l l r o t a t i o n s
F=[R(1 , 1 )+R(2 , 2 )+R(3 , 3 ) , R(2 , 3 )−R(3 ,2 ) , R(3 , 1 )−R(1 ,3 ) ,

R(1 , 2 )−R(2 ,1 ) ;
R(2 , 3 )−R(3 ,2 ) , R(1 , 1 )−R(2 ,2 )−R(3 ,3 ) , R(1 , 2 )+R(2 , 1 )

, R(1 , 3 )+R(3 ,1 ) ;
R(3 , 1 )−R(1 ,3 ) , R(1 , 2 )+R(2 , 1 ) , −R(1 ,1 )+R(2 , 2 )−R

(3 ,3 ) , R(2 , 3 )+R(3 , 2 ) ;
R(1 , 2 )−R(2 ,1 ) , R(1 , 3 )+R(3 , 1 ) , R(2 , 3 )+R(3 , 2 ) , −R

(1 ,1 )−R(2 ,2 )+R(3 , 3 ) ] ;
%compute e i g env e c t o r evvmax o f l a r g e s t e i g enva l u e ev
[V,D] = eig (F) ;
ev = D(1 , 1 ) ; evvmax = V( : , 1 ) ; %f i r s t ev and evvmax
for i =2:4

i f D( i , i )>ev
ev = D( i , i ) ; evvmax = V( : , i ) ; %remember

l a r g e s t ev and evvmax
end

end
[E,P]= r e s e r (X,Y, evvmax ) ; %compute error and opt imal P=

UX
end

Listing 5: Computing the optimal predictor P and the error E.

function [E,P] = r e s e r ( X, Y, u )
[ n ,m] = s ize (X) ;
E=0; P= [ ] ;
for k=1:m

y = rotquat ( [ 0 ; X(k , : ) ] , u ) ; %ro t a t e the x
v e c t o r s

P=[P y ( 2 : 4 ) ’ ] ; %s to r e in P=UX
E = E + norm( Y( : , k )˜−˜P( : , k ) ) $ˆ\wedge$2 ; %sum

of norms o f d i f f e r e n c e s
end
E = E/m;

end
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The Matlab/Octave function reser shown in Listing 5 shows how to compute
the error E given by (4) and the optimal predictor P = UX. Note that using
the largest eigenvalue of the matrix F directly, as proposed by Coutsias et al.
(2004), frequently results in complex values due to roundoff errors and negative
values inside the root operation (see definition of eq in (Coutsias et al., 2004)),
which mathematically is impossible. Thus we recommend to directly compute
E by using (4).

6 Evaluation

To evaluate our approach of determining the spatial alignment of 3D acceler-
ation sensor and derotating time series before doing comparisons we apply it
to real world acceleration data. We use acceleration time series recorded pair-
wise by shaking two 3D accelerometers together and estimate if two devices
were shaken together based on various similarity measures on their time series.
In order to quantify the gain of derotating time series before comparing them
we separately compare pairwise time series without and with derotation. Sim-
ilarity between individual axes of two 3D accelerometers strongly depends on
the spatial alignment of the accelerometers — therefore, comparing the original
(arbitrarily aligned) axes directly with each other cannot be expected to yield
useful results. Consequently, when not derotating time series, we apply the well
known practice of computing and comparing the magnitude time series instead
of utilizing individual axes. Before calculating these magnitudes we compensate
for gravity by normalizing time series and subtracting their mean (to discard the
influence of gravity) for each axis and device. To demonstrate that derotating
time series is possible even with short recordings, we limit all time series to a
duration of 2 s, which seems a compromise between distinguishability and usabil-
ity for the user-mediated device pairing problem (cf. (Mayrhofer and Gellersen,
2009)).

To compare two acceleration time series we utilize well known approaches –
indicating either the amount of divergence (error) or similarity. As distance
metrics indicating error in the time domain we use: root mean squared error
(RMSE), mean absolute error (MAE), median absolute error (median), stan-
dard deviation of errors (SD), median absolute deviation of errors (MAD) and
dynamic time warping (DTW). As distance metrics indicating error in the fre-
quency domain we use: RMSE of the FFT power spectra of both time series
(FFT RMSE), MAE of the FFT power spectra (FFT MAE), median absolute
error of the FFT power spectra (FFT median), standard deviation of errors
of the FFT power spectra (FFT SD) and median absolute deviation errors of
the FFT power spectra (FFT MAD)1. As metrics indicating similarity we use
correlation coefficients by Pearson (1895) (Product-Moment Correlation Coef-
ficient), Spearman (1904) (Rank Correlation Coefficient), and Kendall (1938)
(Tau Rank Correlation Coefficient) as well as magnitude squared coherence (co-
herence), which has been used frequently on comparing acceleration time series
in previous research (Ben-Pazi et al., 2001; Cornelius and Kotz, 2012; Dargie,
2009; Findling et al., 2014; Lester et al., 2004; Mayrhofer and Gellersen, 2009).

1In preliminary evaluations, errors of FFT phase information have been evaluated as well,
which seemed to not yield feasible distinguishing information and consequently have been
excluded in this evaluation.
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For coherence we apply parametrization as stated by Mayrhofer and Gellersen
(2009). We expect coherence – representing the most sophisticated amongst the
selected approaches – to yield better results than correlation coefficients, which
we further expect to yield better results than the selected error based metrics.

6.1 Evaluation data

As source of acceleration time series we use the u’smile ShakeUnlock database2

published by Findling et al. (2014). It contains pairwise 3D acceleration time
series of two devices shaken together: a mobile phone held in the hand and a
watch strapped to the wrist (Figure 1), shaken for about 10 s. In total, the
database contains 29 participants shaking two devices 20 times, which results
in 580 records with two 3D acceleration time series in each record. Acceleration
has been recorded with 100 Hz across all devices. As we limit time series to a
duration of 2 s we therefore only utilize 200 values per time series for comparison.

Summarizing, we use 696000 acceleration sensor values (580 records of 2
time series with 200 samples in 3 dimensions) from this database for evaluating
our derotation approach.

(a) Front side (b) Rear side

Figure 1: Acceleration time series recording setup with the u’smile ShakeUnlock
database (picture taken from (Findling et al., 2014)).

6.2 Time series derotation example

Figure 2 shows two sample magnitude time series from the u’smile ShakeUnlock
database. The samples were originated by two devices actually shaken together.
Axes have been gravity adjusted before calculating the magnitudes, and the
time series have been limited to a duration of 2 s. Although magnitudes are
not equal, their similarity is obvious: phasing is similar, though overall the
amplitude seems to be higher for device 2.

Looking at time series of individual axes for the same samples, similarity is
not as obvious anymore (Figure 3). Although acceleration phasings and am-
plitudes are similar for axis 1, for axis 2 only phasings are obviously similar –

2Evaluation data fetched from http://usmile.at/downloads.
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Figure 2: Sample acceleration time series magnitudes of device 1 and 2.

for axis 3 there is no obviously visible similarity. After applying derotation (by
rotating the 3D acceleration time series of device 1 according to the spatial
alignment of device 2) similarity is obvious again for all axes.

Table 1 provides previously stated metrics for these two sample time se-
ries – for comparing magnitudes and individual axes, without and with ap-
plying derotation. As expected, comparing not-rotated time series of individ-
ual axes causes highest errors/least similarities. Comparing magnitudes causes
smaller errors/higher similarities. Overall, smallest errors/highest similarities
were achieved by comparing derotated, individual axes.

Without derotation With derotation
Metric Mag. A1 A2 A3 A1 A2 A3
RMSE 5.65 4.25 6.71 8.39 3.24 4.16 4.49
MAE 4.44 3.23 5.69 7.34 2.28 3.52 3.67
MEDIAN 3.88 2.71 5.15 7.71 1.38 3.56 3.24
SD 6.12 5.31 6.96 8.14 3.63 5.63 5.58
MAD 5.39 2.20 5.35 6.93 1.65 4.46 3.07
Pearson 0.56 0.87 0.87 -0.57 0.77 0.91 0.74
Kendall 0.44 0.76 0.69 -0.49 0.68 0.77 0.60
Spearman 0.61 0.92 0.88 -0.68 0.86 0.92 0.80
DTW 1.25 1.03 2.62 2.38 0.61 1.06 0.71
FFT power RMSE 69.07 40.83 91.56 68.29 27.09 40.41 30.90
FFT power MAE 22.04 14.52 24.75 19.97 11.36 13.40 10.84
FFT power Median 7.09 3.34 2.93 4.03 2.73 3.40 3.18
FFT power SD 67.13 39.26 89.09 66.61 26.61 39.65 30.52
FFT power MAD 8.26 3.38 2.59 3.01 2.42 3.33 2.34
Coherence 0.80 0.61 0.56 0.60 0.63 0.65 0.64

Table 1: Similarity metrics of sample acceleration time series, for magnitudes
(Mag.) and individual axes (A1-A3), without and with derotating axes before
comparison.

6.3 Experimental setup

As the effect of increasing similarity between two 3D time series applies for
correlated time series (devices shaken together) as well as for uncorrelated time
series (devices not shaken together) an evaluation must include both correlated
and uncorrelated time series. For this reason we determine if devices were
shaken together by comparing all possible combinations of acceleration time
series from the database. Each comparison results in a single, scalar metric
value s. Applying a threshold t so that min(s) ≤ t ≤ max(s) to s we obtain
the true match rate (TMR, rate of devices correctly being identified as shaken
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(a) Axis 1 without derotation (b) Axis 1 with derotation

(c) Axis 2 without derotation (d) Axis 2 with derotation

(e) Axis 3 without derotation (f) Axis 3 with derotation

Figure 3: Sample 3D acceleration time series axes without (a, c, e) and with
derotation (b, d, f).
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together) and the true non match rate (TNMR, rate of devices correctly being
identified as not shaken together). The false match rate (FMR, rate of devices
incorrectly being identified as shaken together) is the complement to the TNMR:
FMR = 1 − TNMR. For error based metric values (RMSE, MAE, MEDIAN),
if s < t time series are identified as shaken together – if s ≥ t time series
are identified as not shaken together. Respectively, for similarity based metric
values (correlation coefficient, coherence), if s < t time series are identified as
not shaken together – if s ≥ t time series are identified as shaken together.
Comparison with ground truth (if the two time series have been recorded from
devices actually shaken together) originates the TMR and TNMR (resp. FMR)
used in the receiver operating characteristic (ROC) curves. To obtain the TMR
we perform a pairwise comparison of all 580 pairs of acceleration time series
(watch and phone) from the database. To obtain the TNMR (resp. FMR) we
use all 1160 · 1159/2/2 = 336110 other possible pairwise comparisons of time
series from a phone and watch each3.

6.4 Results

Evaluation results clearly show that derotating and comparing individual axes
of acceleration time series (Figure 4b) yields better results than computing
and comparing their magnitudes (Figure 4a). This supports our hypothe-
sis that derotating pairwise 3D acceleration time series before doing compar-
isons improves comparison results. Table 2 states the equal error rate EER =
1 − TMR ' 1 − TNMR and the square root of the minimum squared error
rate

√
MSER =

√
min((1− TMR)2 + (1− TNMR)2) for comparing time series

based on magnitudes and on derotated, individual axes for all metrics4.

Time series magnitudes Derotated axes time series

EER
√

MSER
√

MSER
TPR

√
MSER

TNR
AUC EER

√
MSER

√
MSER

TPR

√
MSER

TNR
AUC

RMSE 0.373 0.512 0.544 0.768 0.696 0.233 0.322 0.741 0.808 0.844
MAE 0.391 0.528 0.548 0.728 0.682 0.235 0.324 0.74 0.808 0.841
Median 0.429 0.587 0.485 0.72 0.65 0.246 0.34 0.738 0.784 0.824
SD 0.354 0.462 0.587 0.792 0.698 0.233 0.322 0.741 0.808 0.844
MAD 0.355 0.473 0.603 0.742 0.687 0.235 0.324 0.74 0.808 0.841
Pearson 0.318 0.394 0.637 0.845 0.711 0.18 0.252 0.817 0.827 0.905
Spearman 0.318 0.391 0.639 0.85 0.712 0.181 0.254 0.808 0.834 0.904
Kendall 0.316 0.393 0.646 0.828 0.712 0.181 0.253 0.833 0.81 0.904
DTW 0.458 0.629 0.666 0.466 0.605 0.391 0.545 0.56 0.678 0.649
FFT RMSE 0.33 0.466 0.675 0.665 0.749 0.149 0.206 0.874 0.836 0.923
FFT MAE 0.189 0.264 0.819 0.809 0.887 0.214 0.301 0.788 0.786 0.863
FFT median 0.395 0.554 0.591 0.627 0.661 0.411 0.575 0.56 0.629 0.632
FFT SD 0.327 0.462 0.671 0.675 0.752 0.149 0.205 0.88 0.834 0.925
FFT MAD 0.239 0.325 0.734 0.813 0.844 0.208 0.291 0.808 0.782 0.867
Coherence 0.178 0.241 0.815 0.845 0.899 0.156 0.217 0.856 0.837 0.921

Table 2: Evaluation results: axes derotation decreases error rates for deciding
if devices have been shaken together.

As expected, overall coherence based comparison yields good results, fol-
lowed by correlation coefficients and less sophisticated error based metrics. Al-
though results for some error based metrics are close to random when based
on magnitudes, there is a significant improvement when derotating and com-
paring individual axes instead – e.g. FFT based RMSE delivers results similar
to coherence. Interestingly, for correlation coefficient based metrics derotating

3Assuming that comparing time series is commutative, namely comparing time series A
with B yields the same results as B with A – which applies to all our metrics.

4
√
MSER represents the Euclidean distance between the point TMR = TNMR = 1 and

the resulting TMR/FMR closest to this point.
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(a) Magnitude based comparisons (b) Derotated individual axis based compar-
isons

Figure 4: Selected performance metrics for deciding if devices have been shaken
together using their acceleration time series, based on comparing magnitudes
and derotated, individual time series.

and comparing single axes significantly decreases the FMR for high TMR. The
close-to-flat area in the magnitude ROC curve indicates, that – for the data used
in our evaluation – magnitude correlation coefficient based separation without
significantly increasing FMR is possible for about 70-80% of samples. Separa-
tion of the remaining 20-30% is either erroneous or causes a significant rise in
FMR. This effect disappears when derotating and comparing individual axes.

7 Conclusions

We have contributed a method for determining relative spatial alignment of
devices based on independently recorded acceleration time series during common
movement. Using quaternions, our approach allows to analytically compute
the optimal rotation between the respective reference systems with a run-time
complexity of O(N2) for N samples. The significant advantage over heuristic
approaches is that this method is guaranteed to provide the optimal rotation
with deterministic run-time. We suggest that this approach is beneficial ofr all
applications comparing acceleration (or other 3D sensors) time series that were
recorded independently with potentially arbitrary and unknown alignment, and
that it can be used on systems with limited computational resources such as
mobile phones.

Using real world experimental data and coherence as the currently best per-
forming distance metric for determining if two devices were shaken together, we
see an improvement of about 11% in equal error rate by derotating the coordi-
nate system of one of the devices before comparison. We note that this is the
approach taken in previous research, relying on magnitude only and discarding
angular information of all movement, and it still benefits from applying the
method proposed in this paper.
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We suspect that other methods for comparing 3D time series and using
this additional information – which was previously impossible with arbitrarily
rotated devices – can achieve significantly lower error rates. Our proposed
analytical derotation method therefore opens new research questions for future
work.

All Matlab/Octave scripts and data sets are available under the terms of the
GNU Lesser General Public License (LGPL) at http://usmile.at/downloads.
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