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ABSTRACT
Smartphones and tablets are an indispensable part of modern
communication and people spend considerable time interact-
ing with their devices every day. While substantial research
has been conducted concerning smartphone usage, little is
known about how tablets are used. This paper studies mobile
device usage characteristics like session length, interaction
frequency, and daily usage in locked and unlocked state with
respect to location context. Based on logs from 1,585 An-
droid devices (470 years of total usage time), we derive and
analyze 23 million usage sessions. We found that devices
remain locked for 60% of the interactions and usage at home
occurs twice as frequent as at work. With an average of 58
interactions per day, smartphones are used twice as often as
tablets, while tablet sessions are 2.5 times longer, resulting
in almost equal aggregated daily usage. We conclude that us-
age session characteristics differ considerably between tablets
and smartphones.

Categories and Subject Descriptors
K.6.2 [Installation Management]: Performance and us-
age measurement; D.4.6 [Security and Protection]: Au-
thentication.

General Terms
Human Factors, Measurement

Keywords
Daily interactions, Device unlocking, Locked usage, Session
length, Smartphone, Tablet, Usage session, User context

1. INTRODUCTION
Personal mobile devices have become ubiquitous today and
people typically spend several hours using smartphones and
tablet computers each day. Analyzing characteristics of user
interactions with their devices can benefit many research
areas [8]. Consequently, smartphones – being the most pop-
ular mobile device form factor today – have recently been
the subject of handset-based studies analyzing characteris-
tics of usage and interaction [2, 4, 8, 12, 13]. However, little
is known about how users interact with tablet devices, which
are becoming a mainstream phenomenon, reporting an an-
nual market growth rate of 68% in 2013 [3]. Smartphones and
tablets offer comparable technical capabilities like connectiv-
ity, computational power, operating systems and application
ecosystem. The two form factors differ predominantly in
screen size. As device size has an effect on both application
and mobility, understanding how tablets are used in compari-
son to smartphones is worthwhile. In this work, we therefore
analyze mobile device usage characteristics such as session
length, interaction frequency and daily usage with respect
to three dimensions:

1) As the majority of interactions with mobile devices do not
include unlocking the device [4], we distinguish between
locked and unlocked usage.

2) Since location context (e.g., being at home or at work)
is known to have a significant effect on mobile device
usage [12], we consider contexts classified as home, office,
other meaningful place, and elsewhere.

3) With little previous knowledge about the impact of form
factor on device usage, this work is to our best knowledge
the first to analyze and compare usage characteristics of
both smartphones and tablets.

Our objectives are two-fold: on one hand we aim to give a
high level overview of mobile device usage characteristics. On
the other hand we want to provide extensive multi-layered
statistical information on device usage based on the dimen-
sions stated above. Being first to consider not only one but
three dimensions, we seek to answer our main research ques-
tion: How do context, form factor, and lock status effect
mobile device usage session characteristics?



The paper is organized as follows: First, previous mobile
device usage studies and their results are discussed in sec-
tion 2. Next, the concepts of locked and unlocked usage
sessions as well as user context are explained and defined in
section 3. Section 4 outlines the underlying dataset and how
usage sessions are derived, the algorithms applied to detect
locations based on Wi-Fi scan results and GSM cell-IDs, and
how contextual meaning is assigned to discovered locations.
We introduce and discuss our findings in section 5. The final
section 6 concludes the paper.

2. RELATED WORK
Different aspects of mobile device usage have previously been
studied. Falaki et al. [2] reported “immense diversity” in
smartphone usage when analyzing user interaction on 255
Android and Windows Mobile smartphones, finding the aver-
age number of interactions to vary from 10 to 200. A study
on 17,300 BlackBerry devices was conducted by Oliver [8],
observing an average interaction time per day of 101 minutes
with 80% of the usage sessions taking 90 seconds or less. The
high percentage of rather short interaction can be explained
with the emergence of what Oulasvirta et al. [9] refer to
as checking habits: short but repetitive access of dynamic
content providing some form of informational “reward”, for
example checking news, emails or Facebook. Verkasalo [14]
examined contextual patterns in mobile device usage of 324
smartphone users, finding device usage to be noticeably di-
verse in office and home context. Soikkeli et al. [12] studied
the relation between mobile device usage and end user con-
text using 140 smartphones. While not distinguishing locked
and unlocked usage, they found that usage sessions are longer
in home context while more frequent in office context.

To our knowledge, the first work concerned with locked and
unlocked mobile device usage was conducted by Truong et al.
[13]. In order to motivate Slide to X, an alternative lock
screen utilizing microtasks, they conducted a user study to
analyze how often users unlock their devices. Studying mo-
bile device usage based on an earlier version of the dataset
used in this work, Wagner et al. [16] observed that a no-
ticeably number of interactions occur without unlocking the
device. Recent work closely related to our research focused
on analyzing characteristics of locked and unlocked mobile
device usage [4]. While their work is also based on an earlier
version of the dataset used in our study and covers many
similar aspects, their study does neither cover the effect of
end user context nor form factor in relation to device usage.
Except for Wagner et al. [16], who did not distinguish de-
vice types, all previous studies analyzed smartphone usage.
Little work has been published, however, on tablet usage
patterns. A rare example is Müller et al. [7], who conducted
a multi-method based exploration of tablet usage, finding
tablets to be mostly used at home and often while doing
secondary activities such as watching TV, eating or cooking.

3. SESSION AND CONTEXT
This work studies locked and unlocked mobile device usage
sessions with respect to user contexts and device form factors.
These concepts are explained and defined in this section.

3.1 Mobile Device Usage Session
Mobile device usage sessions are consecutive periods of time
wherein users interact with their devices. Unlike most pre-

vious studies, we distinguish between locked usage sessions
and unlocked usage sessions. Locked usage sessions repre-
sent periods of usage throughout which devices are locked by
some form of keyguard: for instance PIN, password, graphi-
cal pattern, face unlock, fingerprint, or swipe-to-unlock. To
protect access to mobile device data and services as well
as preventing accidental interaction with the device, inter-
action possibilities are heavily restricted while devices are
locked (i.e., in an unauthenticated state). Interactions are
limited to certain activities considered uncritical, like activat-
ing device screens to check for time, battery health, network
connectivity, notifications, appointments, or taking pictures.

In contrast to locked usage sessions, an unlocked usage ses-
sion begins with unlocking the device’s keyguard, e.g., by
entering the correct password, PIN, or pattern – and last as
long as the device is used continuously. Hence device access
is unrestricted in unlocked sessions. We further consider the
period of time between users starting to interact with their
devices and devices being unlocked (starting unlocked ses-
sions) to be the authentication time: the time it takes to
unlock devices.

3.2 User Context
People use their mobile devices in different ways, depending
on their current situation. For instance, in an office situation
people might be more likely to use their smartphones to make
phone calls or check for next meetings, while at home devices
might be used more to surf the Internet or watch movies.
Research by Soikkeli et al. [12] reflects these different usage
patterns by observing that usage sessions are 37% longer
in home context over office context, but happen 56% more
often in office context over home context.

Deriving context from aggregated information is often dif-
ficult. Nevertheless, information on time and location can
be combined in order to derive contextual place informa-
tion. Based on previous research by Jiménez [5] and Soikkeli
[11] we distinguish four different place-related user contexts:
a) home b) office c) other meaningful, and d) elsewhere.
While home and office are self-explanatory, other meaning-
ful refers to places that do not have the characteristics of
home and office, but still a significant amount of time is
spent there. A frequently visited gym, for instance, would
be considered an other meaningful place. Any place that is
not classified as one of these three contexts is assigned the
elsewhere context. This includes, but is not limited to, less
frequent visited places like restaurants as well as transitions
between other contexts.

Unlike other studies [5, 11, 12], we do not assign an abroad
context for places outside users’ home country. The reason
being that Soikkeli et al. [12] found that on average users
spend only 2% of their time abroad, making this context
neglectable for the analysis of average usage patterns.

3.3 Device Form Factor
We assume device form factors to have a considerable im-
pact on device usage. We therefore analyze usage sessions
characteristics with respect to device form factors – namely
smartphone and tablet devices. One previously used ap-
proach to distinguish form factors in device logs is based on
the device’s ability to place or answer phone calls [4]. How-



ever, some tablet devices are capable of performing GSM
voice call (e.g., the Galaxy Tab 10.1). Hence we chose the
screen diagonal as a discriminator for form factors. Devices
featuring a screen size of 7′′ or higher are considered to be
tablets while devices with smaller screens are regarded as
smartphones. We calculate the screen diagonal from screen
resolution and pixel density stated in the dataset.

4. METHODOLOGY AND DATA
Our analysis is based on more than 100 billion records of An-
droid mobile device usage, collected from over 17,000 devices
around the world by the Device Analyzer project [16]. The
complete dataset we were granted access to by the University
of Cambridge Computer Laboratory1 is the largest and most
detailed dataset on Android device usage publicly available
today. It consists of 263 different features2, spanning a broad
range from raw sensor data to application usage, recorded
either periodically or event based by a stand-alone applica-
tion available in the Google Play Store. The set of devices
in the dataset covers at least 1,277 unique device types in
175 countries, with 4,700 devices participating for more than
one month and 321 devices participating in the project for
more than one year. Further details about the underlying
data used in this work can be found in [15, 16].

In order to ensure quality of data used in our study, the De-
vice Analyzer dataset is cautiously revised, and records not
suitable for our study are excluded. We disregard records
from old versions of the Device Analyzer application that do
not include all data required in our session detection model
(see section 4.1). Devices not using any keyguard (with key-
guard including slide-to-unlock) are omitted, as they do not
allow distinguishing between locked and unlocked state. To
enable per-day statistics, only days captured entirely in the
available dataset are used. Thus, we drop records of days
recorded only partially, for instance because the recording
application crashed, was paused or not installed for the full
time. Since the usage session model is based on display state
as an indicator of user presence, devices configured to keep
the display on while connected to a charger were also omit-
ted. Furthermore, we only analyze devices which provide
data for at least seven days.

4.1 Usage Session Extraction
Deriving usage sessions from device logs requires a techni-
cal concept of recognizing user interaction. Two approaches
have been used in previous research. Since mobile device
interactions usually involve an application (even simple ac-
tions such as making a phone call require an application),
one approach by Soikkeli et al. [12] defines usage sessions as
the time periods certain applications are running in the fore-
ground on the device. However, this approach is not suitable
to study locked usage, as there is not necessarily an applica-
tion active in the foreground during locked interaction. Mo-
bile device interaction almost entirely relies on touchscreen
interaction, either to display information or to capture user

1The University of Cambridge Computer Laboratory and
Data Funder do not bear any responsibility for our analysis
or interpretation of the Device Analyzer Dataset or data
thereof.
2http://deviceanalyzer.cl.cam.ac.uk/keyValuePairs.
htm

input. Because energy consumption is an inherent concern
with battery powered mobile devices, displays – which are
energy-intensive – are usually switched off as soon as possible
after usage. This is done either manually or automatically
after a short idle timeout. Hence, the more frequently used
approach to derive usage sessions from device logs is to define
usage sessions as time periods in which the device’s screen
is switched on (screen power based models) [2, 4, 8, 9, 13].

Figure 1: State machine for session detection [4]

Although naive screen power based usage session extraction
comes fairly close to actual device interaction, some pitfalls
exist which – in our experience – can distort the results no-
ticeably if not considered carefully. Consider e.g., incoming
phone calls, which activate the screen to display the caller’s
number and to allow the user to answer the call. If the call
goes unanswered, a naive screen power based approach would
falsely consider this a session of user interaction. Or consider
phones with touchscreens, that utilize a proximity sensor to
switch off the screen when the device is held closely to a user’s
head, e.g., during a call, in order to prevent accidental touch
events caused by the user’s ear. As users tend to slightly
shift the phone’s position during calls, this would result in
naive screen power based models mistakenly recognizing mul-
tiple short usage sessions instead of one consecutive session.
It has been observed that overall 12.7% of the changes in
screen power state on smartphones are actually related to
calls and hence do not constitute the boundaries of genuine
user interaction sessions [4]. These findings are based on a
state machine based usage session extraction approach capa-
ble of avoiding mentioned pitfalls – which we consequently
incorporate in our approach (see fig. 1).

4.2 Context Detection Algorithm
Alongside extracting locked and unlocked sessions, we de-
rive the context these sessions occurred in, based on time
and location information. While the Device Analyzer dataset
provides timestamps, obtaining location information requires
some effort. The dataset does not contain GPS information,

http://deviceanalyzer.cl.cam.ac.uk/keyValuePairs.htm
http://deviceanalyzer.cl.cam.ac.uk/keyValuePairs.htm


which would be of little use in indoor or urban environments
anyway. The Device Analyzer application records coarse lo-
cations of devices as returned by the network provider. Since
recording such information raises privacy concerns, partici-
pants were requested to opt-in for sharing their location for
research purposes – which only 1.12% of the users chose to
do, precluding further analysis due to sample size.

Hence we derive location information from two other sources
of information which can be related to device locations in-
directly: GSM cell IDs and Wi-Fi scan results. GSM cell
IDs were anonymized by hashing in the dataset to protect
participants’ privacy. Further, while the option to opt-out
from recording anonymized GSM cell IDs existed too, only
2.41% chose to do so – leaving records for 97.59% of par-
ticipating devices. Wi-Fi scan results, including service set
identifier (SSID) and MAC address of Wi-Fi access points
within range are anonymized as well and are available for all
capable devices in the dataset. An algorithm to extract lo-
cation context information from handset-based GSM cell ID
data has been proposed by Jiménez [5], extended to utilize
Wi-Fi scan data by Soikkeli [11] and applied to a study of
smartphone usage in [12]. For our research, we implemented
the extended algorithm while applying some simplifications
for the sake of computation time ([11, 12] applied the algo-
rithm on a dataset of 140 devices while the dataset we use
contains 17,103 devices). The algorithm consists of two parts:
first, meaningful locations are identified, which requires dif-
ferent approaches for cell ID data and Wi-Fi scan results.
Subsequently, contexts such as home or office are assigned
to the identified locations based on time information.

4.2.1 Deriving Places from Cell Data
A mobile phone is almost always connected to a cell tower,
uniquely identified by cell identifier (CID) and location area
code (LAC). As these attributes are anonymized in the
dataset used in this work, we cannot relate them to geo-
graphic coordinates by using a database like OpenCellID3.
However, since a cell tower has a fixed position and a limited
range, it could be considered to be one place in terms of user
context detection. As cell tower placement aims to minimize
areas without network coverage and enhance connectivity ro-
bustness, adjacent cells usually overlap each other. Devices
may dynamically switch between cells if another one is con-
sidered “better” than the current cell. As a result, it is not
unlikely for even a stationary mobile phone to be connected
to several different cells over the course of time [18]. Moving
the device, for instance in an office building, possibly even
increases the number of different cells a device is connected
to while still being in the same abstract place (e.g., office
context). In order to obtain places from cell data, adjacent
cells therefore need to be clustered. For our implementation,
we apply a clustering algorithm based on minimum circular
subsequences proposed by Yang [18]. Given a sequence of cell
IDs a device has been connected to, Yang defines a circular
subsequence as a subsequence starting and ending with the
same cell ID and containing at least two different cell IDs
with the cardinality being the number of different cell IDs it
contains. A minimum circular subsequence is a circular sub-
sequence that does not contain other circular subsequences
and thus indicates that a device has “returned” to where

3http://opencellid.org

it was in the beginning. Cells that appear in a minimum
circular subsequence of low cardinality are assumed to be
co-located and therefore assigned to the same cluster. To
avoid the problem of “over-clustering” large areas in situa-
tions like stop-and-go traffic on a freeway, cells are clustered
around “qualified” cells that appeared at least Q times for
at least one day. For our work, we choose Q = 10 and a
minimum circular subsequence cardinality threshold S = 2,
as suggested by Yang [18]. Further details on deriving places
from cell data are found in [5, 12, 18].

4.2.2 Deriving Places from Wi-Fi Scan Results
Wi-Fi-enabled mobile devices periodically scan for Wi-Fi ac-
cess points within range. The result contains a list of access
points, each described by its MAC address, SSID, received
signal strength indicator (RSSI), and frequency. The interval
between individual scans ranges from a few seconds to sev-
eral minutes, depending on factors like OS build, hardware,
device state, and connectivity state. The dataset used in
this work features an average scan frequency of 129 scans
per day.

Since Wi-Fi access points are typically stationary, Wi-Fi scan
results are frequently used for location-based services such
as indoor positioning and navigation systems. A popular
approach is to construct a unique Wi-Fi “fingerprint” of a
certain location based on observed unique access point iden-
tifiers and corresponding signal strengths and an extensive
body of literature exists on various fingerprinting techniques.
While previous studies used a fingerprinting-based approach
to derive meaningful places from Wi-Fi data [11, 12], we
choose a less complex method. Taking the available history
of scan results for a single device as input, the following steps
are applied to derive contextual places, each identified by a
cluster of adjacent access points:

1. Create a sequence A of all known access points, sorted
descending by the number of occurrences.

2. The first access point from A constitutes the root R of
a new cluster C.

3. For each scan result containing R, add all other discov-
ered access points to C.

4. Remove from A each access point contained in C.

5. If A is not empty, proceed with step 2.

While this approach is less sophisticated and assumable less
accurate than a fingerprinting-based approach, it is also less
complex and computational intensive which has to be taken
into account, given we are processing approximately 10 TB
of raw data. Assuming a Wi-Fi access point has a maximum
indoor range of 50 meters, a cluster spans at most a circu-
lar area with a diameter of 150 meters (imagine a cluster
containing three access points with the root R located in
the middle and the other two access points opposed to each
other as far away as possible while still maintaining an over-
lap with R). Given we are trying to identify places such as
home and office (and keeping in mind that in contrast, GSM
cells can have a range of several kilometers), we argue that
the granularity of our approach is sufficient for the study at
hand, allowing us to avoid a more computationaly expensive
fingerprinting-based approach.

http://opencellid.org


4.2.3 Context Detection
Time information is one of the most important information
available to detect user context [1]. Making some basic as-
sumptions about standard users’ diurnal patterns allows us
to draw educated guesses on home and office contexts: In
order to put a contextual meaning to the places derived from
cell and Wi-Fi scan data, we assume that under normal cir-
cumstances a standard user

• does not sleep in the office,

• is at home during night hours (12 a.m. and 6 a.m.),

• works between 10 a.m. and 4 p.m. on workdays,

• and does not go to work on weekends.

While these assumptions are obviously fuzzy and oversimpli-
fied considering e.g., night shifts, home workers, holidays, un-
employment, or traveling salesmen, previous research shows
that results are still fairly accurate. Based on similar assump-
tions, Jiménez [5] was able to detect home contexts with an
accuracy of 66% and office contexts with an accuracy of 74%
(n = 578) while Verkasalo [14] reported classifying 70% of
contexts correctly (n = 87), both solely using places derived
from cell information. Due to the lack of ground truth in
our dataset, we are unfortunately not able to state accuracy
measures of detected contexts. However, as we combine both
Wi-Fi and cell data for context location detection and since
places derived from Wi-Fi are considerably more accurate
than cell-based places we assume to achieve similar or better
accuracy than reported in [5, 14].

To detect home and office context we apply an algorithm
based on Soikkeli [11] to both cell-based and Wi-Fi-based
places. At first, places that have been visited more often
than the average number of visits across all derived places
are considered to be meaningful places. Place not classified
as meaningful places are assigned the elsewhere context. Fur-
ther, meaningful places are considered to be office context if
both

Visits during weekends

Total visits
< 0.2 (1)

Visits during weekday working hours

Visits during weekdays
> 0.5 (2)

Home context is assigned to meaningful non-office places if
both

Visits on weekday night hours

Visits during weekdays
> 0.25 (3)

Visits on weekdays during non-working hours

Visits during weekdays
> 0.7 (4)

Other meaningful is assigned to all meaningful places neither
considered home or office.

Cell-based and Wi-Fi-based context detection is applied to
classify the context of a usage session, depending on which
information is available. If for one place contexts derived cell-
based and Wi-Fi-based differ, we choose the most specific
context in the following order: 1) home 2) office 3) other
meaningful, and 4) elsewhere.

5. RESULTS AND DISCUSSION
In this section we present and discuss our results. As device
unlocking is related to mobile device security, we first take a
look at security-relevant device configuration features avail-
able within the dataset not covered by previous empirical
research. To evaluate the feasibility of Wi-Fi scan based con-
text detection and similar applications, we discuss the yield
of Wi-Fi scans based on 88 million scan results and compare
the findings to Bluetooth scans. Subsequently, we outlines
the results of the context detection approaches.

Studying locked and unlocked usage sessions for certain char-
acteristics constitute the core results of this work. Examined
characteristics include: average device usage time per day,
average usage session duration and average amount of usage
sessions per day. For each locked, unlocked, and overall us-
age sessions we compute mean and median number of daily
interactions as well as mean and median daily usage time in
regard to context and form factor. For each device, this is
done by calculating the mean and median for each feature
over all observed days. The mean and median locked, un-
locked, and overall session durations are calculated across the
entire observation period for each device, again in relation to
context and form factor. We then calculate the grand mean
(mean of the means of all devices) and the grand median
(median of the medians of all devices). Table 1 summarizes
our results and compares them to findings of previous mobile
device usage studies.

Finally, we present results concerning device unlocking du-
ration with a focus on graphical pattern unlock.

5.1 Security-Related Device Configuration
A fundamental aspect of the Android security model is to
strictly limit root privileges to the kernel and a small sub-
set of services. This intentionally constrains the capabilities
of applications. One way to overcome those restrictions is
to gain root privileges by rooting the device. Since rooting
undermines the security model, it introduces significant secu-
rity threats [10]. We found that 17.4% of the devices in the
dataset are rooted (n = 2,698), which seems to be rather high.
However, given the scientific nature of the Device Analyzer
project, one has to keep in mind that the dataset potentially
includes more devices of technology enthusiast than the over-
all population, therefore the share of rooted devices might
be lower outside the dataset.

While the primary source of Android applications is Google’s
Play Store, a number of alternative markets exist. As these
markets are known to frequently host ad-aggressive appli-
cations, plagiarisms, and malware [6], Android prevents in-
stalling Android Application Package (APK) files from all
sources except Google’s Play Store by default. However, An-
droid provides an option to allow installing these so-called
“third party applications”. We found installation of third
party applications to be allowed on 66% of all devices in
our dataset (n = 10,883). While allowing third party applica-
tions to be installed might be necessary to access services of
other companies, like the Amazon App Store, it also raises
mentioned security concerns.



5.2 Wi-Fi and Bluetooth Scan Results
As mobile phones are almost always connected to a base
station, cell ID-based context detection is usually feasible.
Wi-Fi scan-based context detection, however, relies on Wi-Fi
being enabled on devices and the presence of visible Wi-Fi
access points in close vicinity (around 50 meters indoors). In
order to evaluate spatial coverage and achievable accuracy
of Wi-Fi scan-based applications such as indoor positioning,
navigation, and context detection, we analyzed 88 million Wi-
Fi scan results from 8,485 devices. For comparison, we also
evaluated 219,967 Bluetooth scan results from 4,686 devices,
as Bluetooth is another wireless protocol frequently used for
similar applications (e.g., social context detection [11]).

We found that Wi-Fi scans occurred on average 129 times
per day while Bluetooth scans were performed only 6 times
per day. Single devices detected up to 55 Wi-Fi access points
in one scan on average, while across all devices on average
4.7 access points were in range. Bluetooth scans discovered
one other bluetooth device on average. For the context de-
tection used in our work, the probability of seeing at least
one access point to determine the current location is key.
We found the probability of seeing at least one Wi-Fi access
point to be high with a mean of 0.90 and a median of 0.96,
compared to the probability of seeing another Bluetooth de-
vice, which is 0.55 for both mean and median, as depicted
in fig. 2.

Figure 2: Average number of surrounding devices
and probability of seeing at least one other device

5.3 Context Detection
Comparing GSM and Wi-Fi-based location detection, as ex-
pected we found Wi-Fi-based location detection to yield bet-
ter results in most situations. Quality of results was mea-
sured by the amount of distinctly detected home and office
contexts. We argue reasons therefor are twofold: First, Wi-
Fi signals have a smaller signal range compared GSM signals,
hence allowing a more precise detection of locations. Sec-
ondly, parameterizing the clustering of cell IDs is a trade off
between under- and over-clustering, in which either multiple
clusters exist for one abstract location or multiple locations
are falsely grouped together. Moreover, cell ID information
are not available for around half the analyzed tablet devices.
However, Wi-Fi-based location detection as well does not

always yield results, for instance at work places without any
Wi-Fi access points in range.

Hence, combining both location sources improved the overall
result in every situation. In particular, home context could
be detected for 91% of the phones and 79% of the tablet
devices, as outlined in fig. 3. For 77% of the phone-type
devices, office context was detected while only for 48% of
the tablet devices an office context was found. This is to be
expected, considering that tablet devices are less handy and
thus less often brought to work, compared to smartphones.
To not distort results, we excluded devices for which no home
context could be detected from consecutive usage session
analysis.

Figure 3: Context detection results

5.4 Number of Daily Interactions
When looking at the number of daily interactions, we confirm
observations from [4] that the majority of interactions does
not include unlocking the device. Overall, people used their
phones on average 57 times per day but only unlocked them
for 40% of the interactions. Tablet devices are used about
half as often, namely 27 times per day on average with a
similar unlocked usage share of 39%. Since locked usage only
allows for a limited set of actions, mainly checking informa-
tion, the high proportion of locked sessions can be explained
by checking habits as described by Oulasvirta et al. [9].

In the distribution of interactions across the different con-
texts (see fig. 4 (a)), we see that the number of interactions is
fairly evenly distributed across home, other meaningful and
elsewhere for both phone and tablet as well as locked and
unlocked usage. However, office context accounts only for
roughly half as many interactions as each of the other con-
texts, indicating that people use their devices less frequently
in work situations compared to leisure activities. Our results
in respect of office usage are well in line with findings by
Soikkeli et al. [12], who reported that 12% of smartphone us-
age sessions occur in office context and 29% elsewhere. Our
results indicate that the share of smartphone sessions in office
context is 16% while 25% occur elsewhere. However, Soikkeli
et al. [12] found that 47% of the sessions take place in a home
situation while other meaningful places only account for 9%
of the sessions. We found, though, the share of sessions
in home context to be 28% while other meaningful places



(a) Grand mean of number of sessions per day by context (b) Distribution of sessions per day across devices

Figure 4: Daily interactions

accumulate 31% of the usage sessions. This effect might
be introduced by different user panels: the Device Analyser
dataset we use contains users from 175 different countries
and is not limited to specific professions, age groups, or life
styles, while the panel used in [12] consists mainly of Finnish
male university students.

All previous studies observed high diversity across users and
usage sessions in terms of both frequency and duration [2, 4,
8, 12, 16]. Since the average number of interactions therefore
is limited in adequately describing the panel as a whole (as it
is biased by a few rather high values), fig. 4 (b) illustrates the
distribution of both mean and median of daily interactions
per device.

5.5 Session Duration
Regarding session duration, we found that in general, us-
age sessions on tablet devices last more than twice as long
as phone usage sessions. Locked sessions on average last
94 seconds on phones (median 11 seconds) while spanning
206 seconds on tablet devices (median 15 seconds). As locked
usage sessions are usually short, they are more prone to dis-
tortion caused by display timeouts counted towards usage
time in cases in which the user does not manually switch off
the device’s screen, which technically marks the end of the
usage session [4]. Locked sessions being longer for tablet de-
vices compared to smartphones are hence arguably caused by
the fact that tablets are configured with an average display
timeout of 6,6 minutes while smartphones feature a mean
display timeout of only 2.8 minutes.

Average unlocked sessions span 5 minutes on phones (me-
dian 1.2 minutes) while lasting for 11.6 minutes on tablet
devices (median 3.3 minutes). Interestingly, context does
have a noticeable effect on session duration (see fig. 5 (a)):
In home context, sessions on both tablet and phone devices

are considerably longer than in other contexts while sessions
in office context are usually the shortest. On tablet devices,
for instance, unlocked sessions in home context have an aver-
age duration of 11.4 minutes while in office context, unlocked
sessions would only last 6.7 minutes.

Again, session duration is highly diverse, both across ses-
sions and across users by more than an order of magnitude.
For example, the median across the mean unlocked session
lengths of tablet devices is 8.8 minutes, compared to a mean
of 11.6 minutes, which is biased by a mean session length
of up to 89 minutes on some devices. Figure 5 (b) there-
fore again depicts the distribution of both mean and median
of the session duration per device for locked, unlocked and
overall usage.

5.6 Daily Usage Duration
We found that the average locked device usage per day for
phones and tablets is nearly equal (43 minutes vs 36 minutes),
as the tablets’ longer sessions compensate for the higher num-
ber of sessions on phones. Unlocked usage of tablet devices
sums up to 88 minutes per day (median 53 minutes), while
phones are used on average 86 minutes per day (median
58 minutes). Overall, phone usage amounts to 117 minutes
per day (median 82 minutes) while tablets feature an overall
usage of 112 minutes (median 67 minutes). As with indi-
vidual session length, home context accounts for the largest
share of usage while office has the smallest share per context
of daily usage.

The average device usage per day is again dominated by a
small amount of devices accumulating an excessive amount
of daily usage. Some phones featured an average usage per
day of almost 15 hours while the maximum average usage of
tablet devices is 7 hours. The median of the overall mean
daily usage is, however, 106 minutes for phones and 99 min-



(a) Grand mean of session duration by context (b) Distribution of session duration across devices

Figure 5: Session duration

utes for tablet devices. Figure 6 (b) depicts the distribution
of both mean and median of daily usage for locked, unlocked,
and overall device usage.

5.7 Device Unlocking
Apart from analyzing unlocked device usage, we analyzed
how users lock their devices based on all devices within the
original dataset featuring the required information. Unlock-
ing a device requires either slide-to-unlock or some form
of authentication like PIN, password, or graphical pattern.
Since the underlying dataset unfortunately only labels graph-
ical pattern-based unlocking explicitly, means of comparing
different authentication methods are limited. However, pat-
tern unlock seems to be quite popular, as it is enabled on
42% of the smartphones (n = 4,152) and on 28% of the tablet
devices (n = 418). Of these devices, 74% are configured to
provide visual feedback while entering the pattern, increas-
ing the vulnerability to so-called shoulder surfing attacks,
i.e., capturing the secret pattern by looking over the user’s
shoulder during device unlocking [17]. On 5% of the phones
and 9% of the tablets no form of device locking, not even
slide-to-unlock, is enabled (see fig. 7).

Figure 7: Usage of different locking mechanisms

One aspect of the usability of unlocking mechanisms is the
speed at which the device can be unlocked. Using the state
machine approach described in fig. 1, we measure the time

between turning the device’s screen on and unlocking the
device, indicated by a USER PRESENT intent broadcasted
by the Android system when the device is unlocked. The
8.6 million unlocking sessions we extracted that way, how-
ever, also contain sessions in which the user turns the device
on but only attempts to unlock it after several minutes (given
a long display timeout is configured). From a comprehensive
real world study conducted by Zezschwitz et al. [19] we know
that unlocking takes on average 1.5 seconds for PIN-based
mechanisms and 3.1 seconds for pattern-based unlocking. We
therefore reasonably choose an arbitrary upper limit of 10 sec-
onds and only take shorter unlocking sessions into account,
which leaves us with 6.8 million sessions.

Figure 8: Density of unlocking session duration

Our results confirm the observation of Zezschwitz et al. [19]
that pattern unlock requires notably more time than other
unlocking mechanisms like PIN, as the unlocking duration
distribution (see fig. 8) illustrates. Looking at sessions shorter
than 10 seconds, we find that pattern unlock requires on av-



(a) Grand mean of device usage per day by context (b) Distribution of daily usage across devices

Figure 6: Daily device usage

erage 2.7 seconds (median 2.2 seconds) while other unlocking
methods take only 2.5 seconds on average (median 1.7 sec-
onds).

6. CONCLUSION
In this work we studied locked and unlocked mobile device
usage with respect to device form factor and user context.
For our study we extracted a total of 23 million usage ses-
sions from 100 billion mobile device usage records using a
sophisticated screen power state machine-based approach.
Using anonymized GSM cell IDs, Wi-Fi scan results and
timestamps of records we derived location information for
usage sessions. By making reasonable assumptions about
standard users’ diurnal patterns, we were able to draw ed-
ucated guesses about users’ locational context, identifying
home context for 91% and office context for 77% of the smart-
phone devices.

Consistent with previous studies we found high diversity in
device usage characteristics, both across sessions and users,
vary with more than an order of magnitude. We observed
that on average, smartphones are used around twice as much
per day as tablet devices (58 times vs. 27 times). However,
devices are unlocked in only 40% of the interactions. Given
the limited forms of interaction available in locked state, the
high share of locked usage indicates that the majority of us-
age constitutes some form of short information checking. Our
results show that 16% of smartphone usage occurs in office
context and 28% in home context. Contrary to the number
of interactions, we found that the duration of usage sessions
is in general more than twice as long for tablets compared to
smartphones: on average, unlocked sessions on phones last
5 minutes while tablet usage sessions account for 11,6 min-
utes. As a result, the daily usage of both smartphones and
tablets is nearly equal (117 minutes vs. 112 minutes). Again,
home context accounts for the largest share of usage while

office has the smallest share per context of daily usage. Along-
side the usage session analysis we investigated the process of
unlocking a mobile device in terms of speed, which we found
to be on average 2.7 seconds for graphical pattern and 2.5
seconds for other unlocking mechanisms. Furthermore, in
terms of security-related device configuration, we noted that
with 17.4% a fairly high number of devices in the dataset is
rooted while 66% of the devices allow the installation of ap-
plications from untrusted sources known to frequently host
malware.

Our work shows that despite offering similar technical capa-
bilities, smartphones and tablets are used quite differently.
While substantial research has been conducted in regard
of smartphone usage, little work has been done to analyze
tablet usage. With the increasing ubiquity of mobile devices,
people tend to simultaneously own and use several devices of
different form factors like phones, tablets, and smartwatches.
Further research is needed, e.g., on when and why users
transition between different device types.
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Devices Daily interactions Session length [sec] Daily usage [min]

overall locked unlocked overall locked unlocked overall locked unlocked

Smartphones mean med. mean med. mean med. mean med. mean med. mean med. mean med. mean med. mean med.

Falaki et al. [2] 255 10-
250

- - - - -
10-
250

- - - - -
30-
500

- - - - -

Oliver [8] 17,300 87 76 - - - - 68 20 - - - - 101 79 - - - -

Soikkeli et al. [12] 140 - - - - 20 - - - - - 207 45 - - - - 73 -

Truong et al. [13] 10 - - - -
5-
105

- - - - - - - - - - - - -

Hintze et al. [4] 1,969 57 44 33 22 25 20 177 - 88 56 285 192 117 97 33 21 87 71

Our study 1,487 58 44 37 24 25 19 165 30 94 11 299 74 117 82 43 18 86 58

Tablets mean med. mean med. mean med. mean med. mean med. mean med. mean med. mean med. mean med.

Our study 98 27 12 17 6 11 6 414 73 206 15 694 197 112 67 36 7 88 53

Smartphones & Tablets mean med. mean med. mean med. mean med. mean med. mean med. mean med. mean med. mean med.

Wagner et al. [16] 16,000 57 - - - - - 116 - - - - - 123 79 - - - -

Table 1: Comparison of usage session characteristics in different mobile device usage studies
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